Transformer core manufacturer by Transmart? Transmart Industrial’s nanocrystalline core series include multiple types , For example, nanocrystalline cut cores,nanocrystalline toroidal cores,nanocrystalline tape wound cores,nanocrystalline powder cores, etc.Good materials, advanced production technology, and fine manufacturing techniques are used in the production of nanocrystalline core. Transmart nanocrystalline core suppliers & manufacturers designs transformer core material with to keep it outstanding among similar products. See extra information on magnetic core manufacturers. Transmart electrical steel suppliers & manufacturers offer a variety of solutions based on soft magnetic materials. The soft magnetic materials series has become a hot product of Transmart Industrial. In this category you will find different kinds of soft magnetic materials that we produce, including traditional Electrical steel ( Silicon steel) raging from 0.05mm to 0.50mm thickness, latest high performance materials of Nanocrystalline foil and Amorphous ribbon.
As for why it can boost and depressurize It needs to be explained by Lenz’s law The magnetic flux generated by the induced current always hinders the change of the original magnetic flux. When the original magnetic flux increases, the magnetic flux generated by the induced current is opposite to the original magnetic flux. In other words, the induced flux generated by the secondary winding is opposite to the main flux generated by the original winding, so the secondary winding has a low-level alternating voltage. So The iron core is the magnetic circuit part of the transformer The winding is the circuit part of the transformer.
This is because the sheet iron core can reduce another iron loss – “eddy current loss”. When the transformer works, there is alternating current in the coil, and the magnetic flux generated by it is of course alternating. This changing magnetic flux produces an induced current in the iron core. The induced current generated in the iron core flows in a ring in a plane perpendicular to the magnetic flux direction, so it is called eddy current. Eddy current losses also heat the core. In order to reduce the eddy current loss, the iron core of the transformer is stacked with silicon steel sheets insulated from each other, so that the eddy current passes through a small section in the narrow and long circuit, so as to increase the resistance on the eddy current path; At the same time, the silicon in silicon steel increases the resistivity of the material and reduces the eddy current. rolled silicon steel sheet is selected. It is cut into long pieces according to the size of the required iron core, and then overlapped into “day” shape or “mouth” shape. In principle, in order to reduce eddy current, the thinner the silicon steel sheet, the narrower the spliced strip, and the better the effect. This not only reduces the eddy current loss and temperature rise, but also saves the material of silicon steel sheet. But in fact, when making silicon steel sheet iron core. Not only from the above favorable factors, because making the iron core in that way will greatly increase the working hours and reduce the effective section of the iron core. Therefore, when making transformer iron core with silicon steel sheet, we should start from the specific situation, weigh the advantages and disadvantages and choose the best size.
Silicon steel is a traditional magnetic material mainly for 50Hz to 1000Hz electronic and electrical applications. The toroidal core is one of the main products of Transmart Industrial. Our silicon steel core series has many styles to meet the diversified needs of customers. We manufacture various type of cores in silicon steels, such as Current Sensor Cores, silicon steel transformer core, Instrument Transformer Cores, Torodal cores, C-cores, Unicore etc. Transmart Industrial carries out strict quality monitoring and cost control on each production link of toroidal core, from raw material purchase, production and processing and finished product delivery to packaging and transportation. This effectively ensures the product has better quality and more favorable price than other products in the industry. Discover more details on https://www.transmart.net/.
Amorphous nanocrystalline alloys are competing with soft ferrite in the field of medium and high frequency. In 10kHz to 50KHz electronic transformer, the working magnetic flux density of iron-based nanocrystalline alloy can reach 0.5T and the loss P0.05 5 / 20K ≤ 25W / kg, so it has obvious advantages in high-power electronic transformer. In 50 kHz to 100 kHz electronic transformer, the loss of iron-based nanocrystalline alloy is P0.05 2 / 100k is 30 ~ 75W / kg, Fe based amorphous alloy P0.05 2 / 100k is 30W / kg, which can replace some ferrite markets.
On the one hand, it can isolate eddy current, and the data is suitable for higher frequencies; On the other hand, due to the gap effect between particles, the data has low permeability and constant permeability; Because the particle size is small, there is basically no skin phenomenon, and the change of permeability with frequency is relatively stable; Moreover, the powder core can be prepared into special-shaped parts of various shapes for different fields; Finally, the damaged strip in industry can be crushed into magnetic powder, and then made into magnetic powder core, which can reduce the loss and improve the use value of data. The magnetoelectric properties of magnetic particle core mainly depend on the permeability of powder material, size and shape of powder, filling coefficient, content of insulating medium, forming pressure and heat treatment process.