Xrf analysis providers in the USA right now? Analysis and Results: The submitted bottle was examined for signs of interior distress, and the water from the bottle was removed and maintained. Some of the suspended particulate was filtered and examined non-destructively by light microscopy first, to characterize the material. A low magnification stereo microscope image of the filtered white particulate is shown in the image above. From this image, biological tissues were ruled out, and the material was observed to be crystalline. Polarized light microscopy (PLM) was used to analyze the sample next. From this examination, the material showed birefringence as shown in the PLM image on the right. The PLM Image Stereo Microscope image suspect material showed optical properties and morphology dissimilar to common carbonates and sulfates. It was determined to be a birefringent crystalline material, but it could not be identified using only PLM methods. Therefore, analysis using scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM-EDS) would have to be performed to obtain further information about the suspect material.
Energy Dispersive Spectroscopy (EDS) identifies the elements present in a sample by analyzing the X-rays generated by the electron beam of the Scanning Electron Microscope (SEM), making it an indispensable tool. Since X-rays are only generated from the area of the surface excited by the small electron beam, spectra of individual areas or particles can be obtained. Spectral information can therefore be generated for an entire field of view by scanning the beam, providing an elemental map. With the high count rate and excellent signal to noise ratio of our advanced QDD EDS detectors, high resolution data sets are collected and analyzed in minutes, rather than days. This elemental mapping technique allows our clients to immediately visualize the chemical landscape in their samples. Additionally, since the entire spectra is stored for each pixel, areas of interest that are identified later can be examined in detail, without ever having to re-image the sample. Other labs can’t touch the quality and visual impact of the elemental maps we produce here at MicroVision Labs.
Have you always been located in Chelmsford, MA? No, for the first four years MicroVision Labs operated at 15 A Street, Burlington, MA. In 2007 we moved to our present location in Chelmsford, MA. What business designation does MicroVision Labs have? MicroVision Labs is designated as a veteran owned small business. How many staff members does MicroVision Labs have? MicroVision Labs is a small business employing 5-10 full-time, part-time, and contract employees. Read more details on microvisionlabs.com. ?MicroVision Labs is owned and operated by a career microscopist, John Knowles, who understands the needs of our clients. Our emphasis on helping our clients solve problems, not just providing data, sets us apart from other labs. We have the technology and knowledge to find answers to your most difficult challenges, helping you succeed at every step. Can I come in to see my samples analyzed? Yes, our clients are always welcome to come in while their samples are being analyzed. For much of the work we do, it is mutually beneficial for our clients to be present to help direct their project since they can provide expertise about their samples. Some of the services we provide such as polished cross sections have time consuming steps making it impractical for a client to stay to watch everything. In those cases it is recommended that you come in initially to explain what you need done and come back at a later time to see the finished product.
Examining the sample with a polarized light microscope (PLM), it was darker and coarser than expected for a mold sample. The dust appeared to be a closed cell, synthetic blown foam material, and all from the same source. The black color was likely due to pigment particles added to color the foam. Fourier Transform Infra-Red spectroscopy was performed on the foam particles. The spectrum showed a mixture of spectral features, associated with vinyl acetates, polyurethane, and cellulose or other sugar-like polymers. Based on these features, a common urethane acetate foam was determined as the likely source material.
The desired chip packages were sectioned from the larger board, and placed in an epoxy mounting cup. The epoxy was mixed and allowed to harden. The resulting epoxy puck was cross sectioned and polished. The epoxy mounting and cross sectioning process gave precise, perfectly preserved cross sectional surfaces through the desired components and their solder bonds. See even more info at this website.