Slitting line supplier factory today: How to deal with the failure of the main transformer cooler? The failure of the main transformer cooler may cause the temperature of the main transformer to rise, thereby affecting the normal operation of the transformer. Therefore, if it is found that the main transformer cooler is faulty, it is necessary to take timely measures to deal with it. Here are some possible approaches: Replacing Faulty Cooler Parts: If some parts in your cooler are damaged or malfunctioning, consider replacing those parts to restore the cooler to working properly. The specific operation needs to be carried out according to the structure of the cooler and the cause of the failure. Clean the cooler: If the pipes or cooling fins in the cooler are clogged or dirt accumulates, it may reduce the cooling effect and affect the normal operation of the transformer. The way of cleaning can be used to remove the dirt and sundries inside the cooler to restore the normal operation of the cooler. See additional information at cut to length production line.
Current source inverter has a higher power factor: The current source inverter has a higher power factor, which can achieve higher power factor correction, thereby reducing grid harmonic pollution. However, since a higher power factor requires larger capacitor support, a transformer with a larger capacity needs to be selected to meet the power supply requirements of the capacitor. Current source inverter needs additional power supply: The circuit of current source inverter needs additional power supply to ensure the normal operation of the current loop control. These additional power sources need sufficient capacity to support, so a transformer with a larger capacity needs to be selected to meet the power supply requirements. Therefore, the current source inverter needs a larger transformer capacity to ensure the normal operation of the intermediate inductor, support the power supply of the capacitor and meet the power supply requirements. When selecting a transformer, it needs to be selected according to the actual electrical parameters and performance requirements to ensure the normal operation and stability of the inverter.
Epoxy resin is non – combustible, flame retardant, self – extinguishing solid insulation material, safe and clean. It is also a solid insulation material with proven insulation and heat dissipation technology for more than 40 years.Epoxy resin products can be used for dry type transformer, for insulation parts, for instrument transformer, for electrical composite parts and for room temperature curing. Epoxy resin dry transformer uses epoxy resin as insulation material. The high and low voltage windings are made of copper tape (foil), industrial epoxy resin is poured in vacuum and cured, forming a high strength FRP body structure. Insulation grade F, H. Epoxy resin dry transformer has the characteristics of good electrical performance, strong resistance to lightning impact, strong resistance to short circuit, small size and light weight. Temperature display controller can be installed to display and control the operating temperature of the transformer winding to ensure the normal service life of the transformer.
Oil immersed transformers are the most commonly used equipment mainly because of their simple structure and reliable operation. It has faster heat dissipation, uniform conduction, and better insulation performance than the dry-type transformer.Oil transformers are used in power distribution or electrical substations. Their transformer core and coils are immersed in oil, which cools and insulates. Oil circulates through ducts in the coil and around the coil and core assembly, moved by convection.
A transformer coil winding machine is an intricate piece of machinery with an essential role in the manufacturing of transformers, combining modern technology and meticulousness to create high-quality products efficiently. The process starts with the feeding of copper wire into the machine, which passes through a line-up of calibrations guides and tensioners designed to secure alignment and prevent damage. An automated system then causes rotation, gradually looping copper wire around the transformer coil. A computerized system oversees variables such as speed, pitch control, layer count and insulation thickness for consistent turns. Moreover, for distinct transformer models or designs, these machines can be fitted with extra features such as automatic lead cutting and tapping mechanisms for increased versatility and productivity.
CANWIN is not just a length lines company, but also electrical equipment manufacturer. It is the legend of people who have forged their lives with faith and action. CANWIN electrical machinery equipment manufacturing deploys an innovation chain through the industrial chain.Equipment sales can provide integrated solutions; can provide OEM/ODM services to global transformer manufacturers; can provide raw material supply to transformer manufacturers. In the form of cooperation and mutual benefit, set up the transformer manufacturing center and core processing base in the Middle East, India. Dubai. Vietnam. Thailand. etc.
The cut to length line is a special equipment for the production of transformer core, is our latest generation of cross shear line. This cut to length production line is used for shearing, O punching and V notch of transformer core sheet. The special point of this ctl line is that two O punch and one V notch can work at the same time to produce transformer core pieces with 3, 5, 7 steps in vertical direction and 3, 5, 7 steps in horizontal direction.
Want to find good electrical materials, please contact Canwin, a professional electrical material supplier with 20+ years of experiences. Electrical steel, also known as silicon steel sheet, is an important soft magnetic alloy indispensable to power, electronics and military industry, as well as the largest output of metal functional materials, mainly used as the iron core of various motors, generators and transformers. Silicon steel plate’s production process is complex, manufacturing technology is strict, foreign production technology is protected in the form of patent, as the life of the enterprise. Read even more information at https://www.canwindg.com/
Digital measurement – Digital measurement of transformers or other components can be conducted, and the measurement results can be called and collected from the process layer and station control layer through digital networks, thus monitoring transformers and other equipment.Status visualization – The operation status of transformers can be visualized and observed in the power grid.Smart grid or other related systems can express the status information of transformer self-detection or information interaction.
Dry-type transformers are widely used in local lighting, high-rise buildings, airports, dock CNC machinery and equipment, etc. Simply put, dry-type transformers refer to transformers whose iron cores and windings are not impregnated with insulating oil. The relevant technical parameters of dry-type transformers include: Rated capacity (kVA): The capacity that can be delivered during continuous operation at rated voltage and rated current. Rated voltage (kV): The working voltage that a transformer can withstand during long-term operation.
Poor power quality can severely impact the performance of transformer equipment, leading to a variety of negative outcomes. These consequences not only affect the operational efficiency of the equipment but also pose significant economic concerns. One of the primary damages caused by poor PQ is the deterioration of the transformer’s health. Poor PQ, characterized by factors like voltage sags, swells, harmonics, and transients, can cause excessive heating in transformers. This undue heat can degrade the insulation material used in transformers, subsequently reducing their lifespan and potentially leading to catastrophic failures. Therefore, poor power quality can lead to considerable damage to transformer equipment, resulting in economic losses, reduced energy efficiency, and decreased productivity. Therefore, maintaining high power quality is crucial for the optimal performance of transformer equipment and overall operational efficiency.